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A METHOD FOR INTEGRATING THE FOKKER--PLANCK EQUATION 

S. A. Reshetnyak and L. A. Shelepin UDC 533.72 

A method for analyzing kinetic processes described by the Fokker-Planck equation is 
proposed. The method is based on a series expansion of the distribution function in the 
powers of an evolution operator acting on the equilibrium function (or on the series of tem- 
poral derivatives of some parameter). To be specific, the following equation is considered 
which describes a wide range of effects in standard plasma as well as in a solid-body one: 

ol , o/ o or _ A , i )  (1) 

In the case of a spatially homogeneous distribution function f of electrons which only de- 
pend on the modulus of the velocity vector v provided the equilibrium temperature T e of the 
electron distribution is known Eq. (I) can be reduced to 

~-o7- = o--F .gD-~ ]' ~2) 

w h e r e  u -- e x p ( m v 2 / 2 T e )  f ;  g = v 2 e x p ( - m v 2 / 2 T e ) ;  D i s  t h e  d i f f u s i o n  c o e f f i c i e n t ;  v i s  t h e  modu-  
l u s  of the velocity vector. 

By integrating both sides of (2) twice with respect to v and assuming the derivative 
au/3v to be bounded at zero one has 

u = uo + ~u ,  (3)  

where the evolution operation E is defined as follows: 

---- do" d~" g s Or" 
�9 u 

o o 

The operator E now acts on the equilibrium distribution function u = uo on the right-hand 
side of (3) ; the result is called a quasiequilibrium distribution function (QDF)of the first order. 
By acs with the operator E on the right-hand side of (3) on the QDF of the first order one 
finds a QDF of the second order, etc. Thus, the sought distribution function is now repre- 
sented in the form of an infinite series in the powers of the evolution operator E or in the 
form of a series of time derivatives of the parameter uo : 

b~= ~ EnUo = S  ~n d(n)u~ (4) 
n=O n=O dtn 

in which nhe expansion coefficients are found from the formula 

0 0 

Terms with higher derivatives in (4) play an important part only in the initial stages 
of the procedure. They become smaller in due time, and starting from an instant the expansion 
(4) can be limited to a finite number of terms. The assumption that an infinite series can 
be "curtailed" is based on the fact that gradually the system "forgets" the data on the ini- 
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tial distribution function. In practice the most interesting stage of the procedure is de- 
scribed very often by the QDF of the first order. 

The approach described here can be generalized to the continuous spectrum of methods of 
quasiequilibrium distribution functions developed earlier for analyzing the kinetics of elec- 
tron levels of groups of atoms [I], or of oscillatory and rotatory molecule levels [2], or of con- 
centrations of multicharge ions, of intensities of Stokes or anti-Stokes components in the 
forced combination scattering of light [4]. The distribution functions of electrons in dis- 
crete or continuous spectra are similar in many respects. The coefficients are given for 
the series expansion in the derivatives 'obtained by solving the balance kinetic equations for 
groupings of electron states of atoms in thesingle-quantum approximation [i]: 

n m - - i  
�9 ~ ,  exp (EnlTe) 

It is obvious that in the case of discrete spectra the integration must be replaced by 
summation, the diffusion coefficient D by a constant transition rate from the level m to m-- 
i, and also the function g must be replaced by the Boltzmann factor. Moreover, analogously 
to the case of discrete spectra [1-4] full use is made of the normalizing condition for the 
distribution function, 

gudv = t gu (v, O) d~. (5) 

By substituting QDF of the m-th order on the left an ordinary differential equation in time 
is obtained of the same order for finding the time dependence for the parameter Uo. The up- 
per and lower integration limits on the left of (5) can be functions of the parameter Uo or 
its derivatives. Therefore, when finding each specific QDF one has to solve its differential 
equation for the parameter Uo as a function of time under the conditions d(n)uo/dtnlt-~= = 0, 
n#0. 

The choice of uo is now illustrated by giving as an example the ordinary heat-conduction 
equation (g = i, D = Do, u(v, 0) = A~(v)). By substituting the QDF of the first order on the 
left of (5), bearing in mind that uo is a monotonically decreasing function of time, one ob- 
tains after integration over the variation range of v where u > 0 the following equation for 
the parameter: 

2 { 2Oouo~V, = A, 
u~ ~ du._.~o 

whose solution differs from the exact expression for uo in that r is replaced by 4/3. 

The QDF methodis very effective also for analyzing kinetic equations with sources. For 
example, let us consider the equation 

dt v~ ov ,"5-~ ~- "-Y- + q' 43  qv idv  = -JU'  (6) 
0 

where  q i s  t h e  d i s t r i b u t i o n  d e n s i t y  o f  t h e  s o u r c e s ;  N e i s  t h e  e l e c t r o n  c o n c e n t r a t i o n ,  On the  
basis of (6) one can describe the action of laser radiation on gas, or the forming of elec- 
tric charges 3 or the quasistationary distribution function in a discharge with plasma cathode. 

It is assumed that the density of the neutral particle is sufficiently high and that the 
basic processes which form the distribution function of the electrons with respect to ener- 
gies are elastic collisions of electrons with heavy particles. The diffusion coefficient is 
of the form [5] 

O = dov, d o = A:~oT /M,  

where N a is the concentration of the heavy particles; T is gas temperature, M is the mass 
of the heavy particle; ~ is the transport cross section of the electron collison with the 
gas particle. 

Our considerations are confined to the case when in the discharge domain electrons of 
specific energy are generated, that is, q = (Q/4wv~)6(v- Vo),Q = dNe/dt = const, X/im" 
~ > > T. By integrating twice over v on both sides of (6) one finds the QDF of the first order, 
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i. io = u = u o + [~lduo,"dt - -  ?Q, 7o (~..~O~;'~exp(-~v~), .c,. = m.,._T, 

I ~ ~d,,' j ._~ i' dV 
~ 1 :  4:~ O 0 v,2D[o, (~ -~ 4n /ou'2dv ' ~ .  t ,  ": = T ~  ~'V'Uo13 

0 ~'o 

For a positive electron source one has duo/dr > 0; therefore, u in the interval 0 ~ v ~ Vo 
is an increasing function of v and a decreasing one in the interval from Vo to a limiting 
value v m for which the distribution density vanishes. The limiting velocity value v m in- 
creases monotonically with time from Vo to infinity. The change in time of Uo and Vm is found 
by solving the following system of two equations: 

Uo + Ol(vr~)duo/dt -- ?(vm)Q =: O, 

( U o -  '-~ dt j' f0. 6" d---u~ 7Q) v o ' d v =  A~"  4~ 
o 

By analyzing the system (7) it can be concluded that under the condition 

__s < 
U~rt 

and for time instants starting at which one has (vmlvo) a << exp [a(V~m -- vo2)] , 
are valid: 

uo = Ne,  duo,'dt = O. 

(7) 

these formulas 

Thus, the quasistationary distribution function can in this case be represented as a 
sum of two terms, one being the Maxwell distribution with variable electron density Ne, the 
other a stationary distortion of the distribution function due to the source. It is noted 
that a similar assumption with regard to the quasistationary distribution function was pre- 
viously used in [6, 7] when analyzing the rotatory or oscillatory relaxation of molecules. 

The solution procedure in the case of multidimensional Fokker-Planck equations is simi- 
lar. One then has to find the inverse operator H -x. The solution of the problem if one also 
takes into account the spatial inhomogeneity can be represented in the form of a series of 
powers of the operator (0 

;~ = f t - ~  ~ = v ~  . 

Our attention was focused above on the main principles of the method. According to the 
described scheme one can find a QDF of any order and any limits of its applicability for the 
electron distribution in plasma. The possibilities are thus opening up now for solving a num- 
ber of applied problems which are too involved for standard analysis. 
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